Data Science & Machine Learning

168.6K subscribers

About Data Science & Machine Learning

Perfect channel to learn data science, artificial intelligence, data engineering and machine learning with funny quizzes, interesting projects and amazing resources for Free For promotions, contact [email protected] https://t.me/datasciencefun This channel is for Future Data Scientists. 0๏ธโƒฃ Python 1๏ธโƒฃ Data Science 2๏ธโƒฃ Machine Learning 3๏ธโƒฃ Data Visualization 4๏ธโƒฃ Artificial Intelligence 5๏ธโƒฃ Data Analysis 6๏ธโƒฃ Statistics 7๏ธโƒฃ Deep Learning 8๏ธโƒฃ Programming Languages Data Science Usecases โœ… Business Analytics โœ… Marketing & Customer Insights โœ… Healthcare Analytics โœ… Financial Forecasting โœ… Sports Analytics โœ… Fraud Detection โœ… Social Media Analysis โœ… Retail & E-commerce Optimization โœ… HR & Employee Analytics โœ… Government Policy & Public Health Machine Learning Usecases โœ… Predictive Modeling โœ… Recommendation Systems โœ… Image & Speech Recognition โœ… Natural Language Processing (NLP) โœ… Chatbots & Virtual Assistants โœ… Autonomous Vehicles โœ… Stock Price Prediction โœ… Medical Diagnosis โœ… Cybersecurity Threat Detection โœ… Personalization Engines ๐Ÿข Top Companies Hiring for Data Science & ML Roles in 2025 ๐Ÿค– Google Amazon Meta Microsoft Apple NVIDIA Netflix Tesla IBM JPMorgan Chase Intel Adobe Uber Airbnb ๐ŸŒ Tech Experts from All Over the World Are Here! ๐Ÿš€ ๐Ÿ‡ฎ๐Ÿ‡ณ India ๐Ÿ‡จ๐Ÿ‡ณ China ๐Ÿ‡บ๐Ÿ‡ธ United States ๐Ÿ‡ฎ๐Ÿ‡ฉ Indonesia ๐Ÿ‡ต๐Ÿ‡ฐ Pakistan ๐Ÿ‡ณ๐Ÿ‡ฌ Nigeria ๐Ÿ‡ง๐Ÿ‡ท Brazil ๐Ÿ‡ง๐Ÿ‡ฉ Bangladesh ๐Ÿ‡ท๐Ÿ‡บ Russia ๐Ÿ‡ช๐Ÿ‡น Ethiopia ๐Ÿ‡ต๐Ÿ‡ญ Philippines ๐Ÿ‡ฒ๐Ÿ‡ฝ Mexico ๐Ÿ‡ฏ๐Ÿ‡ต Japan ๐Ÿ‡ช๐Ÿ‡ฌ Egypt ๐Ÿ‡ป๐Ÿ‡ณ Vietnam ๐Ÿ‡จ๐Ÿ‡ฉ DR Congo ๐Ÿ‡น๐Ÿ‡ท Turkey ๐Ÿ‡ฎ๐Ÿ‡ท Iran ๐Ÿ‡ฉ๐Ÿ‡ช Germany ๐Ÿ‡น๐Ÿ‡ญ Thailand ๐Ÿ‡ฌ๐Ÿ‡ท United Kingdom ๐Ÿ‡ฎ๐Ÿ‡ถ Iraq ๐Ÿ‡ฟ๐Ÿ‡ฆ South Africa ๐Ÿ‡ฒ๐Ÿ‡พ Malaysia ๐Ÿ‡บ๐Ÿ‡ฆ Ukraine ๐Ÿ‡ฐ๐Ÿ‡ท South Korea ๐Ÿ‡ท๐Ÿ‡ด Romania ๐Ÿ‡จ๐Ÿ‡ด Colombia ๐Ÿ‡ง๐Ÿ‡ช Belgium ๐Ÿ‡ฎ๐Ÿ‡ฑ Israel ๐Ÿ‡ฆ๐Ÿ‡บ Australia ๐Ÿ‡ฒ๐Ÿ‡ป Myanmar ๐Ÿ‡ฐ๐Ÿ‡ช Kenya ๐Ÿ‡ธ๐Ÿ‡ฆ Saudi Arabia ๐Ÿ‡ฆ๐Ÿ‡ท Argentina ๐Ÿ‡บ๐Ÿ‡ฟ Uzbekistan ๐Ÿ‡ณ๐Ÿ‡ฑ Netherlands ๐Ÿ‡ซ๐Ÿ‡ท France ๐Ÿ‡ฒ๐Ÿ‡พ Malaysia ๐Ÿ‡ธ๐Ÿ‡พ Syria ๐Ÿ‡ช๐Ÿ‡จ Ecuador ๐Ÿ‡ต๐Ÿ‡ฑ Poland ๐Ÿ‡ฉ๐Ÿ‡ด Dominican Republic ๐Ÿ‡บ๐Ÿ‡พ Uruguay ๐Ÿ‡ช๐Ÿ‡ธ Spain ๐Ÿ‡ฎ๐Ÿ‡น Italy ๐Ÿ‡ฉ๐Ÿ‡ฐ Denmark ๐Ÿ‡ธ๐Ÿ‡ฎ Slovenia ๐Ÿ‡ฒ๐Ÿ‡ฐ North Macedonia ๐Ÿ‡ฑ๐Ÿ‡ป Latvia ๐Ÿ‡ฑ๐Ÿ‡น Lithuania ๐Ÿ‡ณ๐Ÿ‡ด Norway

Similar Channels

Swipe to see more

Posts

Data Science & Machine Learning
6/12/2025, 6:28:17 AM

Today, let's move to the next topic in the Data Science Learning Series: ๐Ÿ”น *Data Type Conversions* Every column in a DataFrame has a data type like: int64 โ†’ whole numbers float64 โ†’ decimal numbers object โ†’ text or mixed data bool โ†’ True/False datetime64 โ†’ dates & times *Using the right data type:* - Saves memory - Improves performance - Helps with accurate analysis & modeling ๐Ÿ” *How to Check Data Types* df.dtypes ๐Ÿ” *Convert Data Types in Pandas* โœ… 1. String to Integer df['column'] = df['column'].astype(int) โœ… 2. String to Float df['column'] = df['column'].astype(float) โœ… 3. String to DateTime df['Date'] = pd.to_datetime(df['Date']) โœ… 4. Object to Category df['Category'] = df['Category'].astype('category') *Useful when column has limited repeating values โ€” reduces memory usage.* โš ๏ธ *Common Errors* Converting strings like "abc" to int will cause a crash. Use pd.to_numeric(df['column'], errors='coerce') to handle this by converting bad values to NaN. ๐Ÿ“Š *Real-Life Example:* In an e-commerce dataset: - Convert OrderDate to datetime for sorting and time series - Convert ProductCategory to category to save memory - Convert Price from string to float before calculating totals *React with โค๏ธ once you're ready for the quiz* Data Science Learning Series: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D/998 Python Cheatsheet: https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L/1660

โค๏ธ ๐Ÿ‘ โค ๐Ÿ‡ฎ๐Ÿ‡ณ ๐Ÿ‡จ๐Ÿ‡ฒ ๐Ÿ‡ฆ๐Ÿ‡บ ๐Ÿ‡ต๐Ÿ‡ฐ ๐Ÿ‡ต๐Ÿ‡ธ โ™ฅ โฃ 58
Data Science & Machine Learning
6/11/2025, 1:06:09 PM

๐ŸŒŸ Become a Certified Data Scientist just in โ‚น399/- with Learntube backed by Google! ๐ŸŒŸ (Only 20 Seats available) โœ”๏ธ Beginner-Friendly โ€“ No Prior Experience Needed โœ”๏ธ 45+ Lessons | 12+ Hours of Expert Learning โœ”๏ธ Hands-On Projects: Real-World Case Studies in E-commerce, Healthcare & More ๐Ÿ’ก What Youโ€™ll Learn: โœ… Python for Data Science: Numpy, Pandas, Matplotlib โœ… Data Analysis & Visualization Techniques โœ… Machine Learning Basics: Regression, Classification, Clustering โœ… AI Concepts: Neural Networks and Deep Learning Fundamentals โœ… Deployment of Data Models & Real-World Applications ๐ŸŽ“ Get Certified & Join the Top 1% of Data Professionals! โณ Limited-Time Offer. Enroll Now! ๐Ÿ‘‡ https://tinyurl.com/CompleteDataScienceXCoDP

๐Ÿ‘ ๐Ÿ‡ฎ๐Ÿ‡ณ โค๏ธ ๐Ÿ‡จ๐Ÿ‡ฒ ๐Ÿ™ ๐Ÿ‡ฎ๐Ÿ‡ฑ ๐Ÿ—ฟ ๐Ÿ˜ข 27
Image
Data Science & Machine Learning
6/13/2025, 7:55:43 PM

Today, let's move to the next topic in the Data Science Learning Series: ๐Ÿ”น *Renaming Columns & Reindexing* ๐Ÿง  *Why Rename Columns?* - To make column names more readable - To standardize names (e.g., remove spaces, use lowercase) - To match expected input format for ML models or APIs โœ… *How to Rename Columns in Pandas* *1. Rename one or more columns* df.rename(columns={'OldName': 'NewName'}, inplace=True) *2. Rename all columns at once* df.columns = ['col1', 'col2', 'col3', ...] *3. Clean column names using a loop* df.columns = [col.strip().lower().replace(" ", "_") for col in df.columns] ๐Ÿ” *What Is Reindexing*? Reindexing means changing the row labels (index) of your DataFrame. โœ… *How to Reindex* *1. Reset index (commonly used)* df.reset_index(drop=True, inplace=True) *2. Set a specific column as index* df.set_index('CustomerID', inplace=True) *3. Custom reindexing* df.reindex([2, 0, 1]) # Reorders the rows ๐Ÿ“Š *Real-Life Example* In a dataset: - Column "Customer ID" โ†’ rename to "customer_id" for consistency - Reset index after cleaning and filtering for neat presentation - Set "Date" as index when working with time-series data *React with โค๏ธ once you're ready for the quiz* Data Science Learning Series: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D/998 Python Cheatsheet: https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L/1660

โค๏ธ ๐Ÿ‘ โค ๐Ÿ™ ๐Ÿ‡ฎ๐Ÿ‡ณ ๐Ÿฉฒ โ˜„๏ธ โ™ฅ โฃ ๐Ÿ‡ต๐Ÿ‡ฐ 50
Data Science & Machine Learning
6/12/2025, 8:00:46 PM

You have a column of order dates stored as strings like "2024-03-01". Which method is best to convert it for time-based analysis?

โค ๐Ÿ‘ โค๏ธ ๐Ÿ‡ฎ๐Ÿ‡ณ ๐Ÿ˜‚ ๐Ÿ‡ต๐Ÿ‡ฐ ๐Ÿ™ ๐Ÿ‡จ๐Ÿ‡ฉ ๐Ÿ‡จ๐Ÿ‡ฒ ๐Ÿ‡ฎ๐Ÿ‡ฑ 33
Data Science & Machine Learning
6/11/2025, 12:37:10 PM

You're analyzing customer spending. Most spend โ‚น1,000โ€“โ‚น5,000, but a few show โ‚น95,000+. Which method is BEST to identify and filter out these outliers?

โค๏ธ ๐Ÿ‡ฎ๐Ÿ‡ณ ๐Ÿ‘ โ™ฅ โค ๐Ÿ‡จ๐Ÿ‡ฒ ๐Ÿ‡ต๐Ÿ‡ฐ ๐Ÿ’€ ๐Ÿ˜ข 17
Data Science & Machine Learning
6/13/2025, 5:47:34 PM

โœ… *Correct Answer: b) pd.to_datetime(df['OrderDate'])* ๐Ÿ“˜ pd.to_datetime() is the most reliable way to convert string-based dates into proper datetime64 format for sorting, filtering, and time-series analysis. *React โค๏ธ if you got it right*

โค๏ธ โค ๐Ÿ‘ ๐Ÿฉฒ โฃ ๐Ÿ˜ข ๐Ÿฉป 35
Data Science & Machine Learning
6/11/2025, 1:05:29 PM

โœ… *Correct Answer: c) IQR (Interquartile Range)* ๐Ÿ“˜ IQR helps you statistically detect values that fall far outside the middle 50% of the data โ€” making it ideal for outlier detection and filtering. *React โค๏ธ if you got it right*

โค๏ธ ๐Ÿ‘ ๐Ÿ˜ข โค ๐Ÿ‡จ๐Ÿ‡ฒ ๐Ÿ‡ฎ๐Ÿ‡ณ 23
Data Science & Machine Learning
6/11/2025, 11:05:38 AM

Today, let's move to the next topic in the Data Science Learning Series: ๐Ÿ”น *Outliers (Conceptual + Pandas Code)* ๐Ÿง  *What Are Outliers* ? Outliers are data points that are significantly different from the rest of the dataset. *For example:* - A student scoring 100 while everyone else scored 40โ€“60. - A product priced at โ‚น1,000,000 in a range of โ‚น500โ€“โ‚น5000. ๐ŸŽฏ *Why Outliers Matter* - They can skew averages and standard deviation - Mislead visualizations and trends - Affect machine learning model performance โœ… *Detecting Outliers* *1. Using Summary Stats* df['column'].describe() Check the mean, min, max, 25%, 75% โ€” if max/min are way off from the rest, it's a signal. *2. Using IQR (Interquartile Range)* Q1 = df['column'].quantile(0.25) Q3 = df['column'].quantile(0.75) IQR = Q3 - Q1 # Filter out outliers filtered_df = df[~((df['column'] < (Q1 - 1.5 * IQR)) | (df['column'] > (Q3 + 1.5 * IQR)))] *3. Using Visualization* import seaborn as sns sns.boxplot(df['column']) # Outliers appear as dots beyond the whiskers ๐Ÿ” *Real-Life Example* In banking: A transaction of โ‚น20,000 while others are between โ‚น200โ€“โ‚น5000 might be fraud or error. In marketing: One campaign getting 10x more clicks than others โ€” could be spam or a gold strategy. โœ… *What To Do With Outliers?* - Investigate: Sometimes they're valid (e.g., CEO salary). - Remove: If clearly an error or rare anomaly. - Cap: Replace extreme values with upper/lower thresholds (winsorization). - Use robust methods: Like median instead of mean. *React with โค๏ธ once you're ready for the quiz* Data Science Learning Series: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D/998 Python Cheatsheet: https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L/1660

โค๏ธ ๐Ÿ‘ โค โ™ฅ ๐Ÿ˜ข โฃ ๐Ÿ™ ๐Ÿšญ ๐Ÿซก 50
Data Science & Machine Learning
5/18/2025, 2:58:53 PM

Which of the following tools is most commonly used for Exploratory Data Analysis and Visualization in Data Science?

๐Ÿ‡ฎ๐Ÿ‡ณ โค๏ธ โค ๐Ÿ‘ ๐Ÿ‡ฐ๐Ÿ‡ท ๐Ÿ‡ต๐Ÿ‡ฐ ๐Ÿ™ ๐Ÿ˜ข โ™ฅ ๐Ÿ‡จ๐Ÿ‡ฒ 64
Data Science & Machine Learning
5/19/2025, 9:35:49 AM

You're comparing the roles of a Data Analyst, Data Scientist, and Machine Learning Engineer. Which task is most unique to a Machine Learning Engineer?

๐Ÿ‘ โค๏ธ ๐Ÿ‡ต๐Ÿ‡ฐ โ™ฅ ๐Ÿ˜ข ๐Ÿ‡ฎ๐Ÿ‡ณ ๐Ÿ‡ต๐Ÿ‡ธ ๐Ÿ•‰ ๐Ÿ˜‚ ๐Ÿ™ 27
Link copied to clipboard!