Btecky
February 5, 2025 at 04:11 AM
Guide to Building an AI Agent 1๏ธโƒฃ ๐—–๐—ต๐—ผ๐—ผ๐˜€๐—ฒ ๐˜๐—ต๐—ฒ ๐—ฅ๐—ถ๐—ด๐—ต๐˜ ๐—Ÿ๐—Ÿ๐—  Not all LLMs are equal. Pick one that: - Excels in reasoning benchmarks - Supports chain-of-thought (CoT) prompting - Delivers consistent responses ๐Ÿ“Œ Tip: Experiment with models & fine-tune prompts to enhance reasoning. 2๏ธโƒฃ ๐——๐—ฒ๐—ณ๐—ถ๐—ป๐—ฒ ๐˜๐—ต๐—ฒ ๐—”๐—ด๐—ฒ๐—ป๐˜โ€™๐˜€ ๐—–๐—ผ๐—ป๐˜๐—ฟ๐—ผ๐—น ๐—Ÿ๐—ผ๐—ด๐—ถ๐—ฐ Your agent needs a strategy: - Tool Use: Call tools when needed; otherwise, respond directly. - Basic Reflection: Generate, critique, and refine responses. - ReAct: Plan, execute, observe, and iterate. - Plan-then-Execute: Outline all steps first, then execute. ๐Ÿ“Œ Choosing the right approach improves reasoning & reliability. 3๏ธโƒฃ ๐——๐—ฒ๐—ณ๐—ถ๐—ป๐—ฒ ๐—–๐—ผ๐—ฟ๐—ฒ ๐—œ๐—ป๐˜€๐˜๐—ฟ๐˜‚๐—ฐ๐˜๐—ถ๐—ผ๐—ป๐˜€ & ๐—™๐—ฒ๐—ฎ๐˜๐˜‚๐—ฟ๐—ฒ๐˜€ Set operational rules: - How to handle unclear queries? (Ask clarifying questions) - When to use external tools? - Formatting rules? (Markdown, JSON, etc.) - Interaction style? ๐Ÿ“Œ Clear system prompts shape agent behavior. 4๏ธโƒฃ ๐—œ๐—บ๐—ฝ๐—น๐—ฒ๐—บ๐—ฒ๐—ป๐˜ ๐—ฎ ๐— ๐—ฒ๐—บ๐—ผ๐—ฟ๐˜† ๐—ฆ๐˜๐—ฟ๐—ฎ๐˜๐—ฒ๐—ด๐˜† LLMs forget past interactions. Memory strategies: - Sliding Window: Retain recent turns, discard old ones. - Summarized Memory: Condense key points for recall. - Long-Term Memory: Store user preferences for personalization. ๐Ÿ“Œ Example: A financial AI recalls risk tolerance from past chats. 5๏ธโƒฃ ๐—˜๐—พ๐˜‚๐—ถ๐—ฝ ๐˜๐—ต๐—ฒ ๐—”๐—ด๐—ฒ๐—ป๐˜ ๐˜„๐—ถ๐˜๐—ต ๐—ง๐—ผ๐—ผ๐—น๐˜€ & ๐—”๐—ฃ๐—œ๐˜€ Extend capabilities with external tools: - Name: Clear, intuitive (e.g., "StockPriceRetriever") - Description: What does it do? - Schemas: Define input/output formats - Error Handling: How to manage failures? ๐Ÿ“Œ Example: A support AI retrieves order details via CRM API. 6๏ธโƒฃ ๐——๐—ฒ๐—ณ๐—ถ๐—ป๐—ฒ ๐˜๐—ต๐—ฒ ๐—”๐—ด๐—ฒ๐—ป๐˜โ€™๐˜€ ๐—ฅ๐—ผ๐—น๐—ฒ & ๐—ž๐—ฒ๐˜† ๐—ง๐—ฎ๐˜€๐—ธ๐˜€ Narrowly defined agents perform better. Clarify: - Mission: (e.g., "I analyze datasets for insights.") - Key Tasks: (Summarizing, visualizing, analyzing) - Limitations: ("I donโ€™t offer legal advice.") ๐Ÿ“Œ Example: A financial AI focuses on finance, not general knowledge. 7๏ธโƒฃ ๐—›๐—ฎ๐—ป๐—ฑ๐—น๐—ถ๐—ป๐—ด ๐—ฅ๐—ฎ๐˜„ ๐—Ÿ๐—Ÿ๐—  ๐—ข๐˜‚๐˜๐—ฝ๐˜‚๐˜๐˜€ Post-process responses for structure & accuracy: - Convert AI output to structured formats (JSON, tables) - Validate correctness before user delivery - Ensure correct tool execution ๐Ÿ“Œ Example: A financial AI converts extracted data into JSON. 8๏ธโƒฃ ๐—ฆ๐—ฐ๐—ฎ๐—น๐—ถ๐—ป๐—ด ๐˜๐—ผ ๐— ๐˜‚๐—น๐˜๐—ถ-๐—”๐—ด๐—ฒ๐—ป๐˜ ๐—ฆ๐˜†๐˜€๐˜๐—ฒ๐—บ๐˜€ (๐—”๐—ฑ๐˜ƒ๐—ฎ๐—ป๐—ฐ๐—ฒ๐—ฑ) For complex workflows: - Info Sharing: What context is passed between agents? - Error Handling: What if one agent fails? - State Management: How to pause/resume tasks? ๐Ÿ“Œ Example: 1๏ธโƒฃ One agent fetches data 2๏ธโƒฃ Another summarizes 3๏ธโƒฃ A third generates a report Master the fundamentals, experiment, and refine and.. now go build something amazing! (Written by : Armand Ruiz)

Comments