RAILWAY RRB NTPC ALP RPF CONSTABLE JE GROUP D Lucent Science MAGNET SSC CDP CTET EXAM PREPARATION
May 14, 2025 at 02:39 AM
❖ त्रिकोणमिति : महत्वपूर्ण सूत्र ❖
➲ योग सूत्र
● Sin(A+B) = SinACosB+CosASinB
● Sin(A-B) = SinACosB-CosASinB
● Cos(A+B) = CosACosB-SinASinB
● Cos(A-B) = CosACosB+SinASinB
➲ अन्तर सूत्र
● tan(A+B) = tanA+tanB/1-tanAtanB
● tan(A-B) = tanA-tanB/1+tanAtanB
➲ C-D सूत्र
● SinC+SinD = 2Sin(C+D/2) Cos(C-D/2)
● SinC-SinD = 2Cos(C+D/2) Sin(C-D/2)
● CosC+CosD = 2Cos(C+D/2) Cos(C-D/2)
● CosC-CosD = 2Sin(C+D/2) Sin(D-C/2)
● CosC-CosD = -2Sin(C+D/2) Sin(C-D/2)
➲ रूपांतरण सूत्र
● 2SinACosB = Sin(A+B)+Sin(A-B)
● 2CosASinB = Sin(A+B)-Sin(A-B)
● 2CosACosB = Cos(A+B)+Cos(A-B)
● 2SinASinB = Cos(A-B)-Cos(A+B)
➲ द्विक कोण सूत्र
● Sin2A = 2SinACosA
● Cos2A = Cos²A-Sin²A = 2Cos²-1 = 1-2Sin²A
● tan2A = 2tanA/1-tan²A
● Sin2A = 2tanA/1+tan²A
● Cos2A = 1-tan²A/1+tan²A
➲ विशिष्ट सूत्र
● Sin(A+B)Sin(A-B) = Sin²A-Sin²B = Cos²B-Cos²A
● Cos(A+B)Cos(A-B) = Cos²A-Sin²B = Cos²B-Sin²A
➲ त्रिक कोण सूत्र
● Sin3A = 3SinA-4Sin³A
● Cos3A = 4Cos³A-3CosA
● tan3A = 3tanA-tan³A/1-3tan²A
➲ महत्वपूर्ण सर्वसमिकाएं
● Sin²θ+Cos²θ = 1
● Sin²θ = 1-Cos²θ
● Cos²θ = 1-Sin²θ
● 1+tan²θ = Sec²θ
● Sec²θ-tan²θ = 1
● tan²θ = Sec²θ-1
● 1+Cot²θ = Cosec²θ
● Cosec²θ-Cot²θ = 1
● Cot²θ = Cosec²θ-1
❤️
❤
👍
🙏
🥰
13