Physics HeadQuarters
Physics HeadQuarters
May 31, 2025 at 03:56 PM
🏀 *त्रिकोणमिति : महत्वपूर्ण सूत्र (IMP Formula)* 🏀 💠 *योग सूत्र* 😀 🔹 Sin(A + B) = SinACosB +       CosASinB 🔺Sin(A - B) = SinACosB -       CosASinB 🔹Cos(A + B) = CosACosB -       SinASinB 🔺Cos(A - B) = CosA.CosB +       SinA.SinB 💠 *अन्तर सूत्र* 😀 🔹tan(A + B) = tanA + tanB/1 -       tanA.tanB 🔺tan(A - B) = tanA - tanB/1 +       tanA.tanB 💠 *C - D सूत्र* 😀 🔹SinC + SinD = 2Sin(C + D/2)       Cos(C - D/2) 🔺SinC - SinD = 2Cos(C + D/2)       Sin(C - D/2) 🔹CosC + CosD = 2Cos(C + D/       2) Cos(C - D/2) 🔺CosC - CosD = 2Sin(C + D/2)       Sin(D - C/2) 🔹CosC - CosD = - 2Sin(C + D/       2) Sin(C - D/2) 💠 *रूपांतरण सूत्र 😀* 🔹2SinA.CosB = Sin(A + B) +       Sin(A-B) 🔺2CosA.SinB = Sin(A + B) -       Sin(A - B) 🔹2CosA.CosB = Cos(A + B) +       Cos(A-B) 🔺2SinA.SinB = Cos(A - B) -       Cos(A + B) 💠 *द्विक कोण सूत्र* 😀 🔹Sin2A = 2SinA.CosA 🔺Cos2A = Cos²A - Sin²A =       2Cos² - 1 = 1 - 2Sin²A 🔹tan2A = 2tanA/1 - tan²A 🔺Sin2A = 2tanA/1 + tan²A 🔹Cos2A = 1 - tan²A/1 + tan²A 💠 *विशिष्ट सूत्र* 😀 🔹Sin(A + B) = Sin A . Cos B +       Cos A . Sin B 🔺Sin(A - B) = Sin A . Cos B −       Cos A . Sin B 🔹Cos (A + B) = Cos A . Cos B −       Sin A . Sin B 🔺Cos ( A - B ) = Cos A . Cos B       + Sin A . Sin B 💠 *त्रिक कोण सूत्र* 😀 🔹Sin3A = 3SinA - 4Sin³A 🔺Cos3A = 4Cos³A - 3CosA 🔹tan3A = 3tanA - tan³A/1 - 3tan²A 💠 *महत्वपूर्ण सर्वसमिकाएं* 🔹 🔹Sin²θ + Cos²θ = 1 🔺Sin²θ = 1 - Cos²θ 🔹Cos²θ = 1 - Sin²θ 🔺1 + tan²θ = Sec²θ 🔹Sec²θ - tan²θ = 1 🔺tan²θ = Sec²θ - 1 🔹1 + Cot²θ = Cosec²θ 🔺Cosec²θ - Cot²θ = 1 🔹Cot²θ = Cosec²θ - 1 ♦️ *Post को Like share जरूर करिए.....* ❤️❤️ By PhysicsHeadQuarters.com
❤️ 2

Comments