
gombalan altair | alternative universe | suaraduka | sindiran | musik 4u.
June 4, 2025 at 09:05 PM
seperti yang anda tau jika 9 - x² menghasilkan y = x+7
9 - x² = x + 7
maka x = 1 dan x = -2
V = π112(9-x2)² - (x + 7)2dx
V = π12(x4-18x²+81)-(x² +14x +49)dx
V = π/12(x4 - 19x2 - 14x + 32)dx
19 V = x[-x-12 y= x+7
9 - x² = x + 7
maka x = 1 dan x = -2
V = π112(9-x2)² - (x + 7)2dx
V = π12(x4-18x²+81)-(x² +14x +49)dx
V = π/12(x4 - 19x2 - 14x + 32)dx
19 V = x[-x-12x3-7 y= x+7
9 - x² = x + 7
maka x = 1 dan x = -2
V = π112(9-x2)² - (x + 7)2dx
V = π12(x4-18x²+81)-(x² +14x +49)dx
V = π/12(x4 - 19x2 - 14x + 32)dx
19 V = x[-x-12x3- 9 - x² menghasilkan y = x+7
9 - x² = x + 7
maka x = 1 dan x = -2
V = π112(9-x2)² - (x + 7)2dx
V = π12(x4-18x²+81)-(x² +14x +49)dx
V = π/12(x4 - 19x2 - 14x + 32)dx
19 V = x[-x-12 y= x+7
9 - x² = x + 7
maka x = 1 dan x = -2
V = π112(9-x2)² - (x + 7)2dx
V = π12(x4-18x²+81)-(x² +14x +49)dx
V = π/12(x4 - 19x2 - 14x + 32)dx
19 V = x[-x-12x3-7 y= x+7
9 - x² = x + 7
maka x = 1 dan x = -2
V = π112(9-x2)² - (x + 7)2dx
V = π12(x4-18x²+81)-(x² +14x +49)dx
V = π/12(x4 - 19x2 - 14x + 32)dx
19 V = x[-x-12x3- 9 - x² y= x+7
9 - x² = x + 7
maka x = 1 dan x = -2
V = π112(9-x2)² - (x + 7)2dx
V = π12(x4-18x²+81)-(x² +14x +49)dx
V = π/12(x4 - 19x2 - 14x + 32)dx
19 V = x[-x-12 y= x+7
9 - x² = x + 7
maka x = 1 dan x = -2
V = π112(9-x2)² - (x + 7)2dx
V = π12(x4-18x²+81)-(x² +14x +49)dx
V = π/12(x4 - 19x2 - 14x + 32)dx
19 V = x[-x-12x3-7 y= x+7
9 - x² = x + 7
maka x = 1 dan x = -2
V = π112(9-x2)² - (x + 7)2dx
V = π12(x4-18x²+81)-(x² +14x +49)dx
V = π/12(x4 - 19x2 - 14x + 32)dx
19 V = x[-x-12x3-7 maka hasilnya adalah you are very beautiful and cute 🫵🏻
😮
😂
❤️
👍
🙏
😢
😭
🐊
👙
❤
134