Data Science Jobs
Data Science Jobs
June 7, 2025 at 08:43 AM
If you're serious about getting into Data Science with Python, follow this 5-step roadmap. Each phase builds on the previous one, so don’t rush. Take your time, build projects, and keep moving forward. Step 1: Python Fundamentals Before anything else, get your hands dirty with core Python. This is the language that powers everything else. ✅ What to learn: type(), int(), float(), str(), list(), dict() if, elif, else, for, while, range() def, return, function arguments List comprehensions: [x for x in list if condition] – Mini Checkpoint: Build a mini console-based data calculator (inputs, basic operations, conditionals, loops). Step 2: Data Cleaning with Pandas Pandas is the tool you'll use to clean, reshape, and explore data in real-world scenarios. ✅ What to learn: Cleaning: df.dropna(), df.fillna(), df.replace(), df.drop_duplicates() Merging & reshaping: pd.merge(), df.pivot(), df.melt() Grouping & aggregation: df.groupby(), df.agg() – Mini Checkpoint: Build a data cleaning script for a messy CSV file. Add comments to explain every step. Step 3: Data Visualization with Matplotlib Nobody wants raw tables. Learn to tell stories through charts. ✅ What to learn: Basic charts: plt.plot(), plt.scatter() Advanced plots: plt.hist(), plt.kde(), plt.boxplot() Subplots & customizations: plt.subplots(), fig.add_subplot(), plt.title(), plt.legend(), plt.xlabel() – Mini Checkpoint: Create a dashboard-style notebook visualizing a dataset, include at least 4 types of plots. Step 4: Exploratory Data Analysis (EDA) This is where your analytical skills kick in. You’ll draw insights, detect trends, and prepare for modeling. ✅ What to learn: Descriptive stats: df.mean(), df.median(), df.mode(), df.std(), df.var(), df.min(), df.max(), df.quantile() Correlation analysis: df.corr(), plt.imshow(), scipy.stats.pearsonr() — Mini Checkpoint: Write an EDA report (Markdown or PDF) based on your findings from a public dataset. Step 5: Intro to Machine Learning with Scikit-Learn Now that your data skills are sharp, it's time to model and predict. ✅ What to learn: Training & evaluation: train_test_split(), .fit(), .predict(), cross_val_score() Regression: LinearRegression(), mean_squared_error(), r2_score() Classification: LogisticRegression(), accuracy_score(), confusion_matrix() Clustering: KMeans(), silhouette_score() – Final Checkpoint: Build your first ML project end-to-end ✅ Load data ✅ Clean it ✅ Visualize it ✅ Run EDA ✅ Train & test a model ✅ Share the project with visuals and explanations on GitHub Don’t just complete tutorialsm create things. Explain your work. Build your GitHub. Write a blog. That’s how you go from “learning” to “landing a job Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624 All the best 👍👍

Comments