Data Science & Machine Learning
May 29, 2025 at 06:28 PM
Today, Let’s move to the next topic in the Data Science Learning Series:
*Intro to Pandas DataFrame*
*1. What is a DataFrame?*
A DataFrame is a 2D tabular data structure in Pandas, similar to an Excel sheet or SQL table.
Think of it as:
- Rows = Records
- Columns = Features/Attributes
*2. Creating a DataFrame (Basic Example)*
import pandas as pd
data = {
'Name': ['Alice', 'Bob', 'Charlie'],
'Age': [25, 30, 28],
'City': ['New York', 'London', 'Paris']
}
df = pd.DataFrame(data)
print(df)
*Output:*
Name Age City
0 Alice 25 New York
1 Bob 30 London
2 Charlie 28 Paris
*3. Why DataFrame is Important in Data Science?*
- You can easily filter, clean, visualize, and model data.
- Almost every dataset you import (CSV, Excel, SQL) becomes a DataFrame.
*4. Accessing Data in DataFrame*
df['Name'] # Access single column
df[['Name', 'Age']] # Multiple columns
df.iloc[0] # First row
df.loc[0, 'Name'] # Specific value
*5. Real Data Science Use Case*
Imagine analyzing customer data like:
df = pd.read_csv("customers.csv")
df['Spending'].mean() # Average customer spending
df[df['Country'] == 'India'] # Filter Indian customers
You can now explore insights, patterns, and prepare data for ML models — all starting with DataFrames!
*React with ❤️ once you're ready for the quiz*
Data Science Learning Series: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D/998
Python Cheatsheet: https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L/1660
❤️
🇮🇳
👍
❤
🇵🇰
🙏
🇨🇲
🇮🇱
🇵🇸
😢
197